SAF-B protein couples transcription and pre-mRNA splicing to SAR/MAR elements.
نویسندگان
چکیده
Interphase chromatin is arranged into topologically separated domains comprising gene expression and replication units through genomic sequence elements, so-called MAR or SAR regions (for matrix- or scaffold-associating regions). S/MAR regions are located near the boundaries of actively transcribed genes and were shown to influence their activity. We show that scaffold attachment factor B (SAF-B), which specifically binds to S/MAR regions, interacts with RNA polymerase II (RNA pol II) and a subset of serine-/arginine-rich RNA processing factors (SR proteins). SAF-B localized to the nucleus in a speckled pattern that coincided with the distribution of the SR protein SC35. Furthermore, we show that overexpressed SAF-B induced an increase of the 10S splice product using an E1A reporter gene and repressed the activity of an S/MAR flanked CAT reporter gene construct in vivo . This indicates an association of SAF-B with SR proteins and components of the transcription machinery. Our results describe the coupling of a chromatin organizing S/MAR element with transcription and pre-mRNA processing components and we propose that SAF-B serves as a molecular base to assemble a 'transcriptosome complex' in the vicinity of actively transcribed genes.
منابع مشابه
Long noncoding RNA Saf and splicing factor 45 increase soluble Fas and resistance to apoptosis
In multicellular organisms, cell growth and differentiation is controlled in part by programmed cell death or apoptosis. One major apoptotic pathway is triggered by Fas receptor (Fas)-Fas ligand (FasL) interaction. Neoplastic cells are frequently resistant to Fas-mediated apoptosis, evade Fas signals through down regulation of Fas and produce soluble Fas proteins that bind FasL thereby blocking...
متن کاملScaffold/matrix attachment region elements interact with a p300-scaffold attachment factor A complex and are bound by acetylated nucleosomes.
The transcriptional coactivator p300 regulates transcription by binding to proteins involved in transcription and by acetylating histones and other proteins. These transcriptional effects are mainly at promoter and enhancer elements. Regulation of transcription also occurs through scaffold/matrix attachment regions (S/MARs), the chromatin regions that bind the nuclear matrix. Here we show that ...
متن کاملMultiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA.
We have identified multiple distinct splicing enhancer elements within protein-coding sequences of the constitutively spliced human beta-globin pre-mRNA. Each of these highly conserved sequences is sufficient to activate the splicing of a heterologous enhancer-dependent pre-mRNA. One of these enhancers is activated by and binds to the SR protein SC35, whereas at least two others are activated b...
متن کاملDrosophila SAF-B Links the Nuclear Matrix, Chromosomes, and Transcriptional Activity
Induction of gene expression is correlated with alterations in nuclear organization, including proximity to other active genes, to the nuclear cortex, and to cytologically distinct domains of the nucleus. Chromosomes are tethered to the insoluble nuclear scaffold/matrix through interaction with Scaffold/Matrix Attachment Region (SAR/MAR) binding proteins. Identification and characterization of ...
متن کاملRegulation of Adenovirus Alternative Pre-mRNA Splicing
Yue, B-G. 2000. Regulation of adenovirus alternative pre-mRNA splicing. Functional characterization of exonic and intronic splicing enhancer elements. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 926. 55pp. Uppsala. ISBN 91-554-4712-0 Pre-mRNA splicing and alternative pre-mRNA splicing are key regulatory steps controlling gene exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 26 15 شماره
صفحات -
تاریخ انتشار 1998